
IJSRSET1625120 | Received : 02  Feb-2017 | Accepted : 28 Feb-2017 | January-February-2017 [(3)1: 518-520 ] 

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099 
Themed Section: Engineering and Technology 

 

518 

Multi Graphical User Interface Compiler 
Harshad Rane, Brijeshkumar Gupta, Akshay Mhatre, Yogesh Gaikwad 

Padmabhushan Vasantdada Patil Pratishtan‟s College Of Engineering, Sion, Mumbai, Maharashtra, India 

 

ABSTRACT 
 

Today it is difficult to design a good GUI in a widely acceptable language. We plan to design simple user interface 

language with easy to understand constructs for designing user interface. But of course the user will not like only the 

GUI to be in the language in which he is developing an application. To overcome this issue we plan to implement a 

compiler, to be written in Java, which will combine this new language to a target language such as Java. Thus a user 

will get the code for the GUI he is designing in a high level language. We also plan to provide an IDE for writing 

the new language and for compiling it to the target language. The system consists of a compiler for compiling and 

translating JUICE SCRIPT into specified target language, which may be Java Swing, Java AWT, XUL or HTML. 

The system must be expandable for inclusion of new languages also. An IDE for developing the JUICE SCRIPT is 

to be provided for easier development of the JUICE SCRIPT. 

Keywords : JUICE, Multitargeted compiler, JavaCC, XUL 

 

I. INTRODUCTION 

 

To work with a system, the users need to be able to 

control the system and access the state of the system. 

User can interact with system with the help of graphical 

user interfaces (GUI) which accept input via devices 

such as computer keyboard and mouse and provide 

graphical output on the computer monitor. The 

graphical user interface is a computer interface that uses 

graphic icons and controls in addition to text. The user 

of the computer utilizes a pointing device, like a mouse, 

to manipulate these icons and controls. This is 

considerably different from the command line interface 

(CLI) in which the user types a series of text commands 

to the computer. Today designing a good GUI in a 

widely acceptable language is not an easy task. 

 

Our system consists of a compiler for compiling and 

translating JUICE script into specified target language, 

which is Java Swing, Java AWT, XUL or HTML. The 

system must be expandable for inclusion of new 

languages also. An IDE for developing the JUICE script 

is to be provided for easier development of the JUICE 

script. 

 

 

 

 

II. METHODS AND MATERIAL 
 

Here we have mentioned the existing tools for our 

system briefly. 

 

1. Jvider - It is the GUI builder tool for java swing 

applications. With Jvider you can easily design the 

graphical user interfaces for your java applets and 

applications. It provides understandable interface, 

draggable and resizable components. It has ability to 

generate the source code in java language. It has ability 

to export the source code as frame or applet. It is 

platform independent and runs on all environments that 

support Java Virtual Machine (JVM). 

Disadvantages: 

 It is used for creating GUI in one language only. 

 

2. GrafiXML - It is software used to generate graphical 

user interface (GUI) and save them in a UsiXML format 

language. GrafiXML basically work as other GUI 

Builder but also contains tools to localize your 

applications. 

 

 

III. RESULTS AND DISCUSSION 

A. System Working 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  519 

All the code for this system is segregated into different 

Class files. An IDE is developed where user can enter 

code in JUICE script and choose an option for target 

language. 

The compiler has been implemented using JavaCC 

parser generator. It detects all the tokens described in 

JUICE Script. It also checks for parsing errors. Each 

GUI designing language has some common GUI 

components. For each component class files are created. 

All the Classes pertaining to a given target language are 

similar to Classes of other target language. 

 

 

Figure 1 :  System Architecture 

The compiler takes input file with .juc extension and 

converts it to target language based on the switch 

entered. It references the class related to a token for a 

given target language by adding the switch for language 

before the common class name for that token. 

 

For example, on getting token „button‟ and switch AWT 

the class referenced is AWT ButtonData Type. Then a 

call is made to a function written in the referenced class 

based on which property or event is mentioned for that 

control. The code for the same is written in the output 

file by the called function. This Design Strategy makes 

JUICE scalable i.e. adding new language is easier. Error 

detection and Maintenance is also easier. 

B. Proposed Algorithm 

Step 1. The user has to open the IDE provided. 

Step 2. The user has to write input script and save the 

file with .juc extension. 

Step 3. The file is passed as an input to the parser. 

Step 4. The parser parse‟s the tokens one by one and 

pass it to the switching mechanism. 

Step 5. The user has to select target the through 

command switch. 

Step 6. The tokens and command switch is passed as an 

input to the switching mechanism. 

Step 7. Switching Mechanism generates the class file 

name by following formula: Command Switch 

+ Token + Data Type. 

Step 8. According to the command switch the class will 

be passed towards the code generator. 

Step 9. In the code generated the component will be 

selected as per the class name generated by 

switching mechanism. 

Step 10. As per the sub tokens generator by the parser 

the methods in the component are selected 

Step 11. The methods invoked will be writing the GUI 

code in the output file. 

Step 12. The output file is compiled to get the GUI in 

desired language 

 

IV. CONCLUSION 

 
This paper shows that JUICE is a rapidly evolving area 

of research and development. We discussed only the 

key problems in this area and presented some known 

solutions. One key research problem that we still face 

today is the development of truly easy, less complex, 

and time saving techniques for generating GUI in 

different languages. 

 

V. REFERENCES 

 
[1]. https://javacc.dev.java.net 

[2]. http://www.scifac.ru.ac.za/compilers/conts.html 

[3]. http://java.sun.com/products/jfc/download.html 

[4]. http://downloadl-

lnw.oracle.com/javase/1.4.2/docs/api/java/awt/package

-summary.html 

[5]. https://developer.mozilla.org/en/introduction_to_xul. 

[6]. http://download.oracle.com/javase/tutorial/reflect/inde

x.html 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  520 

[7]. http://java.net: JavaCC tm]: Grammar Files 

[8]. Alfred Aho and Jeffrey D. Ullman,(1986) Compilers: 

Principles of Compiler Design. 

[9]. Advance programming in java NIIT, Prentice Hall of 

India, ISBN-81-203-2415-3 

[10]. Raphael A. Finkel, Advanced Programming Language 

Design. 

[11]. Andrew Appel, Jens Palsberg: Modern Compiler 

Implementation in Java. Cambridge University Press, 

2nd edition, 2003. 

[12]. Benjamin Michotte, Jean Vanderdonckt, 

“GrafiXML,AMultitarget User Interface Builder based 

on UsiXML”. 


